
FB9406V2

ECS Project Object-Oriented
Technology Transition Plan

White Paper
Working Paper

April 1994

Prepared Under Contract NAS5-60000

RESPONSIBLE ENGINEER

Audrey B. Winston /s/ 4/25/94

Audrey Winston, Quality Office Date
EOSDIS Core System Project

SUBMITTED BY

Michael S. Deutsch /s/ 4/26/94

Michael S. Deutsch, Quality Office Manager Date
EOSDIS Core System Project

Hughes Applied Information Systems, Inc.
Landover, Maryland

This page intentionally left blank.

Working Paper iii FB9406V2

Contents

1. Introduction

1.1 Purpose ... 1

1.2 Organization ... 2

1.3 Review and Approval... 2

2. Background

2.1 Selecting Object-Oriented Technology .. 4

2.2 Rationale for Selecting OMT ... 5

2.2.1 Discovery Approach .. 6

2.2.2 Single vs. Multiple Semantics Continuum ... 7

2.2.3 Object Realization Continuum ... 8

2.2.4 System Vs Local Problem Discovery Continuum .. 10

2.2.5 Case Tool Support ... 10

2.3 Related Documents ... 11

3. Object-Oriented Implementation Strategies

3.1 Overview ... 12

3.2 Object-Oriented Core Team .. 12

3.3 Object Technology Training Program .. 13

3.4 Consulting & Mentoring Program .. 14

3.5 Fast-Track Strategy ... 14

3.5.1 Fast-Track Activities ... 14

3.5.2 Fast-Track Risk Assessment ... 15

3.6 System Engineering Methodology .. 17

3.7 Software Methodology .. 18

3.7.1 Transitioning People to Object Technology ... 19

Working Paper iv FB9406V2

3.7.2 Transitioning Products to Object Technology .. 19

3.7.3 Transitioning Processes to Object Technology ... 20

4. Segment Object Technology Plans

4.1 Issues ... 22

4.1.1 Planning .. 22

4.1.2 Training ... 22

4.1.3 Reuse ... 23

4.1.4 New Technology Shock .. 24

4.1.5 Measurement and Costing ... 28

4.2 Segment Summary .. 30

4.2.1 Flight Operations Object Technology Plan ... 30

4.2.2 Science Data Processing Object Technology Plan ... 30

4.2.3 CSMS .. 31

Figures

1. Object Discovery Continuum... 6

2. Single vs. Multiple Semantics Continuum ... 7

3. Object Realization Continuum ... 8

4. Methodology Complexity Comparison .. 9

5. Problem Discovery Continuum ... 10

Tables

1. Transition Strategy .. 12

2. Object-Oriented Core Team .. 12

3. Activities for Developing Object-Oriented System Engineering Methodology 18

4. SDPS Prototype Plan .. 26

5. SDPS Prototyping Schedule.. 27

Abbreviations and Acronyms

Working Paper 1 FB9406V2

1. Introduction

1.1 Purpose

This document presents a low risk strategy and plan for transitioning object-oriented concepts
and technology into the Earth Observing System Data and Information System (EOSDIS) Core
System (ECS). This plan is submitted in response to a NASA request to "...provide an object-
oriented design transition plan that addresses risk reduction and is coordinated with baseline
and future technologies." It addresses how the object-oriented paradigm in general, and the
Object Modeling Technique (OMT) specifically, will be implemented on the program. Risk is
minimized by introducing object-oriented concepts and techniques in a start small and grow
incrementally approach.

The transition plan includes both near term and long term strategies. In the near term an Early
Adopters strategy will be instituted within each Segment. Segment early adopter plans and
lessons learned will be coordinated by an Object-Oriented Core Team. The core team includes
representatives from each of the segments, System Integration and Planning (SI&P), and is lead
initially by the Software Engineering Process Group (SEPG). Responsibility for leading the core
team may shift in time as the focus of the core team migrates from software early adopters to
system wide object technology integration. This structure facilitates coordination and visibility
into the controlled adoption of object technology.

Another facet of the near term strategy blends classroom instruction, on-the job-training, and
consulting into an innovative concept know as the Fast-Track. This facilitate rapid learning and
assimilation of the technology into a development team. First, candidate projects are screened by
an object-oriented risk assessment checklist. Second, just-in-time training in object-oriented
analysis and design is provided by industry experts. Finally, on-the-job consulting and
mentoring is provided to ensure successful take up of the technology by the team.

The long term strategy is to facilitate the adoption of object technology at the system design level
where the maximum benefits can be realized. We will develop a single methodology which
incorporates essential aspects of the Process for System Development methodology along with
features of the OMT methodology. A single hybrid methodology will eventually be reflected in
the System Engineering Management Plan, System Implementation Plan, and other program
documents.

The long term plan also calls for a well defined software process with automated CASE support.
The Software Development Plan will be updated to define the object-oriented methodology
details. Updates will address process steps, metrics, design review criteria, document annotated
outlines for deliverable documentation, and quality assurance criteria.

Working Paper 2 FB9406V2

1.2 Organization

This paper is organized as follows:

• Section 1 presents the purpose of the document, its organization, and logistics concerning
its review and points of contact.

• Section 2 explains why the ECS project should introduce the object-oriented paradigm.

• Section 3 presents the program's low risk strategy to infuse object-oriented concepts and
techniques.

• Section 4 extracts relevant information from each Segment's development plan regarding
the introduction of object-oriented technology to facilitated risk management and lessons
learned sharing.

1.3 Review and Approval

This White Paper is an informal document approved at the Office Manager level. It does not
require formal Government review or approval; however, it is submitted with the intent that
review and comments may be forthcoming.

This is the second delivery of the object-oriented technology transition plan white paper. It
provides the necessary background and strategy to understand the transition framework and
overall strategy. It further develops these concepts into detailed tasks, milestones, and
checkpoints. It should be noted that the introduction of object-oriented technology is already
underway in the form of technology prototypes. This revision provides some specific
recommendations on the software engineering development process including modifications to
review criteria, metrics for object-oriented design, schedule guideline, and task definitions.
Therefor, the segment specific plans presented in this document represent work in progress and
are subject to change.

Questions regarding technical information contained within this paper should be addressed to the
following ECS and/or GSFC contacts:

• ECS Contacts

Audrey Winston, Quality Office Allan Bowers, SI&P Office
Software Engineering Process Group Software Engineering Process Group
(301) 925-0353 (301) 925-0643

• GSFC Contact

Gail McConaughy
System Engineering Office Manager
(301) 286-7741

Working Paper 3 FB9406V2

Questions concerning distribution or control of this document should be addressed to:

Data Management Office
The ECS Project Office
Hughes Applied Information Systems, Inc.
1616A McCormick Dr.
Landover, MD 20785

Working Paper 4 FB9406V2

2. Background

2.1 Selecting Object-Oriented Technology

In response to science community and NASA direction, and as a result of post-SRR discussions
and analyses, the ECS project has accepted what could be interpreted as a "mandate" from the
scientific community to develop a new conceptual architecture capable of meeting the needs of
the science community today and in the future. Together, the elements of the mandate comprise
the building blocks for an evolutionary system. That mandate is detailed in the EOSDIS Core
System Science Data Processing Subsystem Reference Architecture (FB9401V2). Object
technology is well suited to the needs of the new reference architecture.

The original ECS development strategy was based on an incremental waterfall process with
formal reviews and documentation being delivered during each increment. This original plan
also included the concept of evaluation packages to enhance early user feedback on requirements
and design alternatives. Evaluation packages could contain both prototype and incrementally
developed software. This means that a product could be in various states of formality at different
points in time. The ideal solution would be to provide a methodology which supports an iterative
development cycle including migration from prototype to formal development at any time. It
would also facilitate recursive passes through the analysis, design and implementation activities
with minimal breakage. The structured analysis and design methodology will permit this round
trip process but requires more rework on each pass than does the object-oriented approach. The
time and engineering effort required to maintain all of the required documents in the face of a
migrating baseline would be, at best, expensive and difficult to manage.

Recent evidence has confirmed that failure of many large and complex software development
projects can be attributed to the shortcomings in the process implied and encouraged by
structured methodologies. These failures include:

• an inability to validate the user's requirements resulting in considerable changes later

• high maintenance costs due to latent system wide problems being discovered in
integration and post deployment when the cost to repair is high

• duplication of effort from phase to phase and from project to project. The top down
approach imposed by structured methods creates barriers to reuse of existing software
products.

The ECS project has already initiated several risk mitigation strategies to deal with these issues
including the recent Multi-Track Development Plan. The Multi-Track Development Plan (White
Paper WP9404V2). The Multi-Track Development Plan for the ECS Project includes several
development process models including prototype, incremental, tool, evaluation package, and
formal releases. Object-oriented technology, with its direct support for iterative development,
complements rather than complicates the Multi-Track Development Plan.

Working Paper 5 FB9406V2

In addition to the shortcomings implied by the process model, structured techniques have
inherent software engineering weaknesses. These weaknesses include:

• Multiple transformations in design evolution. A dependence on a transformation
approach to discovery instead of an elaboration approach results in higher developments
and maintenance costs. Every time a requirements model (Data Flow Diagram) is
transformed into a different design notation (Structure Chart), and a design notation is
transformed into code or other implementation notations, engineering effort is required to
restate the same information in different syntax and semantics. This translation effort
does not add value to the product; it results in non-productive or wasted effort.

• Separated data modeling. When data modeling is separated from behavior modeling,
the process results in higher integration and maintenance costs as well as reduced
adaptability to change over time. Each time data definitions are changed all processes
utilizing the data must be evaluated for impact.

The object-oriented paradigm, together with the multi-track process models, overcome most of
the short comings of both the monolithic development process model and the structured analysis
and design techniques. The object-oriented paradigm is based on a number of fundamentally
different principals which facilitate the benefits of the technique. They include:

• Encapsulation. Data and their associated processing are hidden to outside users of the
data. This aids greatly in localizing potential problems and limits the scope of change
impact.

• Inheritance and polymorphism . Together these techniques permit the factoring out of
common information structures and behavior so that it can be defined once, encapsulated,
and reused within the architecture.

• Abstraction . Systems may be modeled, evaluated, and executed at various layers of
abstraction. This greatly facilitates localizing the impact of change and facilitates reuse.

Together the object-oriented principals facilitate a more iterative development process. The
resulting product is deliverable earlier, more extensible, less costly to maintain, and amenable to
reuse.

2.2 Rationale for Selecting OMT

The benefits of the object-oriented paradigm could be limited to the implementation phase by
introducing an object-oriented language or could be leveraged into the analysis and design
activities by introducing an methodology based on object-oriented principles. C++, a hybrid
language between procedural and object-oriented programming, is the projects standard
language. This permits object-oriented constructs to be implemented while not mandating their
application in the implementation. To gain the advantages of object technology in the earlier
development phases an object-oriented methodology is needed. Of the half dozen or so
prominent methodologies Object Modeling Technique (OMT) was selected as the base
methodology for the ECS project. OMT is well documented, supported by several CASE tool
and consulting vendors, and certified by the Object Management Group (OMG). OMT is a
hybrid methodology. It directly supports all of the object-oriented constructs (encapsulation,

Working Paper 6 FB9406V2

inheritance, polymorphism, aggregation etc.) while permitting considerable flexibility in the
development process. It is one of the most robust methodologies in the market place. To
understand how the methodology accomplishes its flexibility it is mapped to a set of continua.
Each continuum presents divergent points of view on aspects important to methodology
comparisons. It will be shown that OMT supports the most appropriate end, or the widest range,
of alternatives across each evaluation continuum.

2.2.1 Discovery Approach

The technique used to "discover" a design or implementation from a problem statement requires
a designer to select an approach to migrate through various levels of abstractions. The two ends
of the discovery approach continuum are elaboration and transformation, figure 1. Elaboration is
typified by successive refinements of the same information using the same language semantics
until an implementation is discovered. Transformation refers to the restatement of one domain
language such as data flow modeling into another domain language such as Structured Query
Language (SQL).

ELABORATION TRANSFORMATION

Figure 1. Object Discovery Continuum

Traditional software development is based on the transformation of requirement model semantics
[such as processes and data flows] into design model semantics [such as control structures and
data schema]. This technique is based on the assumption that design architectures are
fundamentally different from their respective analysis model. That is, different structures and
languages are needed to express the designers understanding of the problem. It also requires that
the analysis be essentially completed prior to design architecture commitment. The architecture
can not be fully described until all of the raw material is available from the requirements analysis
activity. Changes to the requirements usually mean a significant effort to change the design
architecture. In structured techniques each time the requirements are transformed from one
language and set of structures to another engineering time and energy are lost. There is no value
added to the resulting design simply for having done the transformation. This is not the case in
the OMT methodology.

The elaboration approach to discovering objects is an evolutionary process. Real-world entities
start out as objects in the requirements model and are maintained as objects is the design model.
The analysis and design model are essentially the same model with different levels of detail.

Working Paper 7 FB9406V2

Additional attributes, operations and implementation objects are added as the design is
elaborated but the original real-world objects are retained throughout the development cycle. No
information is ever lost or transformed into a different set of semantics. This preserves the real
world view of the problem and avoids the unnecessary transformation to different design
semantics.

2.2.2 Single vs. Multiple Semantics Continuum

Semantics refers to the language, graphics or words, used to communicate within a given
domain; analysis, design, or implementation, Figure 2. Single semantics simply mean the
engineer can use a single set of notations and rules from analysis through design. Multiple
semantics refers to the use of specialized languages for specialized problems. Multiple semantics
are needed in non-object-oriented domains. Relational databases with their data definition
language (DDL) and data manipulation language (DML) do not map directly to real world
concepts but are necessary where legacy systems are employed. Wherever multiple semantics
are employed added effort is needed to bridge the "semantic gaps."

Analysis
Design

Implementation

Direct Mapping Semantic Gaps

Objects

Polymorphism

Inheritances

Architecture
Subsystem
Package
Generic

SQL
DDL
DML

 3GL
Data types
Procedures

Objects

Polymorphism

Inheritances

SINGLE MULTIPLE

Figure 2. Single vs. Multiple Semantics Continuum

A superior approach to multiple notations would be to permit a single notation to be used for
both requirements modeling and architecture design modeling. The semantics of objects,
encapsulation, inheritance, cardinality, associations, aggregation, and polymorphism should be
directly supported in a single notation. OMT, unlike structured methodologies and some other
object-oriented methodologies, utilizes a single, easy to use notation set for both analysis and
design modeling. The notation provides direct support for all of the object-oriented concepts.

The single notation of OMT allows a layered virtual machine approach to both the requirements
definition and the design. This provides continuity, precise and concise, from problem statement
to implementation--nothing is ever lost. The OMT notation can be directly translated into C++
language specifications [or headers]. Since the notation does not change from analysis to design
the developer does not incur additional costs for recursing backward into analysis from design or
from implementation to design. It facilitates prototyping and development phase iteration.

Working Paper 8 FB9406V2

2.2.3 Object Realization Continuum

Object realization refers to the process used to discover or identify objects in the application
domain, figure 3. Pure object-oriented methodologies such as Object Behavior Analysis or Class
Responsibility Collaboration focus mainly on the behavior of the application. Structured
methodologies and some object-oriented methodologies such as Shlaer-Mellor or Coad-Yourdon
focus primarily on data structures and data transformations. Neither of these extremes will
satisfy the wide range of ECS problem domains.

Data Ingest

Data Processing

Static Attribute Driven Dynamic Scenario Driven

DATA BEHAVIOR

PP
PM
DCI

PM, PS,
PE. PRM,
EP

Process, Schedule
and Manage

Schedule Resources

Figure 3. Object Realization Continuum

The data structure oriented identification approaches focus on internal structures first and
external communications second. This is characteristic of information models such as entity-
relationship models. Operations are added to perform data transformations and movement of
data between objects. The major advantage of this technique is that it is a small step into the
object-oriented domain. The major disadvantage is the increased coupling between objects and
the lower resulting cohesion within an object.

The behavior oriented identification approach, on the other hand, focuses on objects needed to
carry out a scenario driven responsibility or service. This approach allocates system behavior to
objects. Since attributes are added later in the process there is less opportunity for attribute
coupling between objects. It also tends to produce fewer classes and hence, less source code to
develop and maintain. It is generally accepted in the industry that people require a longer time to
make the paradigm shift to a pure object-oriented mind-set.

The pure object-oriented or behavior oriented approach is known to produce smaller and less
complex software systems. In a study conducted by Boeing two object-oriented methodologies
were compared. One used a data driven process while the other used a behavior driven process.
Metrics appropriate to object-oriented designs were collected and analyzed. The measures in the
study included:

Working Paper 9 FB9406V2

• Lack of Cohesion among object Methods (LCOM)

• Weighted Attributes per Class (WAC)

• Weighted Methods per Class (WMC)

• Depth of Inheritance Tree (DIT)

• Number of Children (NOC)

• Coupling Between Objects (CBO)

• Violations of Demeter (VOD)

• Response for a Class (RFC)

The study results figure 4, clearly suggest that a more behavior-oriented process approach will
produce a less complex system, at least in terms of object-oriented complexity measures.

Reference: The Object-Oriented Brewery: A Comparison of Two Object-Oriented Development Methods
 Boeing Computer Services Report BSC-G4059: October 19, 1992

LOCM

WAC
RFC

VOD

CBO

NOC

DIT

WMC

DATA DRIVEN

BEHAVIOR DRIVEN

Pure OO, behavior oriented,
Results In Less Complexity

Figure 4. Methodology Complexity Comparison

The ECS program contains a range of object realization or identification needs. The OMT
methodology process is well defined yet sufficiently flexible to facilitate a focus on either data or
behavior. The notation includes support for identification of both public and private attribute
structures and behavior specifications. The choice of which aspect to focus on is left to the
engineers and will be driven by both the degree of object-oriented understanding in the team and
the nature of the problem.

2.2.4 System Vs Local Problem Discovery Continuum

When, in the development cycle, problems are discovered greatly influences the maintenance
costs of the resulting system. The greater the scope of impact the discovered problem has the
greater the maintenance costs. The ideal methodology would encourage developers to find all
problems, but in particular system wide problems early, in the analysis and design phases.

Working Paper 10 FB9406V2

Systems developed using a structured methods have a peculiar recurring pattern in terms of
finding errors. The distribution of system level problems Vs module level problems was studied
by CMU on a project titled "Interactive Pittsburgh", figure 5. Engineers tend to understand the
part of the system they are working on and resolve local or module level problems quickly. Most
module level problems are removed by the time the system moves into integration. System level
problems tend to follow exactly the opposite rate of discovery. Problems which require
knowledge of many parts of the system are usually discovered later in the life cycle. This
traditionally results in more effort being applied to the system teat and integration phases.

The OMT approach produces a very different profile of problem discovery and system stability.
Objects are encapsulated. This limits the scope of any problems they may contain. The analysis
and design models are essentially two different views of the same model. The design is a
refinement of the analysis model but both share the same information; this facilitates early
identification of problems.

SYSTEM LEVEL LOCAL LEVEL

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

REQ DESIGN IMP TEST

SASD
OO

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

REQ DESIGN IMP TEST

SASD
OO

Percent of Problems discovered by phase

Figure 5. Problem Discovery Continuum

2.2.5 Case Tool Support

The OMT methodology is supported by a number of vendor CASE tools. For the ECS program
the selection criteria included not only support for the methodology but more importantly would
the tool provide features which would allow it to scale up to the size and complexity of the ECS
program? The Software through Pictures product by IDE was selected based on a paper analysis.
Then, a hands-on evaluation was conducted over a period of 30 days by representatives from
several different subsystems. The tool supports configuration management of models, multiple
views of the same model, automated collection and reporting of some object-oriented metrics,
multi-user access, and other features critical to the successful application of the methodology to
the ECS program.

Working Paper 11 FB9406V2

2.3 Related Documents

This document focuses on the rationale for selecting OMT as the basis for the program object-
oriented methodology and the plan to transition parts of the program from structured design to
object-oriented design. It does not repeat information provided in other program documents.
Justification is derived from concepts developed in related project documents, including:

193-00623 ECS Evolutionary Development White Paper, December 1993

194-813-SI4-002 Planning and Scheduling Prototype Results Report for the ECS
Project, February 1994

FB9401V2 EOSDIS Core System Science Data Processing Subsystem Reference
Architecture White Paper, March 1994

FB9403V1 Release Plan Content Description White Paper, February 1994

FB9404V2 Multi-Track Development for the ECS Project White Paper,
March 1994

Working Paper 12 FB9406V2

3. Object-Oriented Implementation Strategies

3.1 Overview

To maximize the benefit of the technology without jeopardizing the program, OMT will be
introduced in a managed risk approach. Two parallel paths are being pursued, a near term
strategy for early adopters of the technology and a long term strategy to facilitate eventual
implementation into all appropriate parts of the program. These strategies are captured in this
plan and then coordinated and maintained by an Object-Oriented Core Team.

The transition strategy covers:

Table 1. Transition Strategy
Strategy Topic Near Term Long Term

Object-Oriented Core Team O

Object Technology Training O

Consulting & Mentoring O O

Fast-Track O

System Engineering Methodology O

Software Engineering Methodology O

3.2 Object-Oriented Core Team

To effectively coordinate and integrate implementation strategies across the project, dedicated
resources, with the appropriate disciplines, will form an Object-Oriented Core Team. The team
will consist of SEPG members from the following organizations:

Table 2. Object-Oriented Core Team
Organization Role/Responsibility

Quality Core Team Leader

Quality Software Development Plan

System Integration & Planning System Engineering Plan

System Integration & Planning System Implementation Plan

Flight Operations Segment Represent FOS Implementation

Science Data Processing Segment Represent SDPS Implementation

Computer System Management Plan Represent CSMS Implementation

Working Paper 13 FB9406V2

The Object-Oriented Core Team will have responsibility for the following activities:

• coordinate knowledge sharing to further evolve transition plans and infrastructure support

• assess opportunities to implement the technology including benefits and risks
identification

• distribute examples including documentation, CASE tool models, and process
descriptions developed by Early Adopters

• review and recommend changes to the System Engineering Management Plan, System
Implementation Plan, Software Development Plan and other affected program
documents.

3.3 Object Technology Training Program

OMT represents a new way of thinking for most engineers, scientists, and managers involved in
the ECS program. Hence, more than simply training courses, our transition plan calls for a
training process. Classroom training for engineers will be combined with on-the-job-training by
mentors. Managers and customers will also receive specialized training. Over time, as people
become skilled in the technology, more specialized and advanced training will be provided. We
foresee the need for specialized training in object-oriented project management, test, metrics,
design standards and reuse strategies and libraries.

All engineers will receive their training regarding OMT, Software through Pictures, and C++ on
a just-in-time basis. To get the most economic benefit from the training, it is important that
individuals are trained just in time to apply the material to avoid knowledge loss due to latency
effects. The training courses selected for object-oriented analysis and design contain both theory
and skill building. To the extent possible, the training will be tailored to work on program
specific examples for both analysis and design.

A training program has been established which addresses, in addition to engineering, all levels of
management and the customer. Training courses include:

• Executive Management Overview (half-day)

• Overview of Object-Oriented Methodology (2 days)

• Object-Oriented System Engineering (3 days)

• Object-Oriented Analysis (4 days)

• Object-Oriented Design (4 days)

• C++ Programming (4 days)

• Other specialized courses such as OO Project Management, Designing for Reuse etc. will
be added as the requirements and their cost effectiveness are identified. These may be in-
house developed course or contracted courses.

The training plan details are contained in the ECS Development Facility Training Plan Project
Instruction, SD-1-002. It contains the details of who should be trained in what topics and when

Working Paper 14 FB9406V2

training is scheduled to take place. This training plan will evolve to provide more specialized
courses as identified by the needs analysis routinely conducted by the SEPG.

3.4 Consulting & Mentoring Program

Studies have indicated that the use of a mentor-apprentice scheme to adopting object-oriented
technology will result in better long term effects. While it may appear to be more cost effective
to sequester the trained engineers in a core team, the anticipated pervasive nature of the
technology dictates a different tack. In the short term we will take advantage of industry expert
consultants. In addition to methodology mentoring the consultants will help in assessing when
and how to introduce object-oriented concepts into the project. In the long term we expect each
segment to develop their own mentors.

Fast-Track teams are encouraged to include a full time consultant as part of the team for their
early iterations. Based on industry experience, this approach provides the following advantages:

• recovers much of the schedule time normally lost to the first application of object
technology

• improves the quality and "object-orientedness" of the Fast-Track product

• reduces the learning time for the Fast-Track team members

• lowers risk associated with adopting a new technology.

Once engineers have been through all the requisite training and have successfully built an object -
oriented application, they will be able to act as mentors on subsequent projects. This will result
in a geometric progression of trained engineers over time.

3.5 Fast-Track Strategy

The Fast-Track strategy goal is to cost effectively leverage object-oriented technology training
and skills into carefully selected parts of the program with relatively low risk. Fast-Track
pilot/training projects will cover the entire life cycle of activities in a short period of time,
nominally three months. The strategy is to combine just-in-time training in objected-oriented
analysis and design with on-the-job training and consulting, while developing real project
products. This has been shown to be the most effective way to build expertise.

3.5.1 Fast-Track Activities

The specific activities of the fast track strategy are:

1. Select a candidate application and perform a risk assessment. Guidelines for selecting
and assessing a candidate application are included in section 3.5.2.

2. Scope the project to be approximately three months so that all life cycle phases can be
visited during the Fast-Track.

Working Paper 15 FB9406V2

3. Combine just-in-time classroom training with mentoring and on-the-job-training on a
small scale project in the following sequence:

A. four days of object-oriented analysis classroom training

B. two to eight weeks of on-the-job analysis on the selected application with
mentoring

C. four days of object-oriented design classroom training

D. complete the design, implementation, and testing with consulting/mentoring
support.

4. Capture lessons learned and recommendations for future iterations and disseminate
through the core team.

3.5.2 Fast-Track Risk Assessment

The best return on investment will come from projects where object technology can be
introduced early, have a long life span, requirements are expected to evolve over time, are
relatively complex, and desire to take advantage of reuse. Longer life spans can better afford the
start-up investment costs normally associated with learning, and adapting to, a new technology.
Object modeling technology aids management in controlling complexity by facilitating better
communications across development teams by enforcing encapsulation and abstractions. It also
facilitates better customer communications by modeling real world objects rather than computer
science or implementation abstractions.

Selecting a Fast-Track opportunity includes considerations for:

• Determining when to begin introducing the technology in the development cycle

• Characterizing the risk factors of the opportunity

• Establishing a plan with goals, objectives, and demonstrable milestones

3.5.2.1 When to Begin

The earlier in the life cycle object-oriented technology is introduced, the easier it is to transition
back to structured techniques and the higher the potential return on investment. It is relatively
easy to transition from an object-oriented analysis and design model to a non-object-oriented
implementation should the risk indicators suggest this is necessary. It is more difficult to
transition from a structured approach to an object-oriented approach at any phase in the life
cycle. The best risk managed approach is to start as early as possible in the requirements
modeling activity with an object-oriented model and only transition back at the implementation
phase if performance or other implementation constraints dictate the need to relax object-oriented
constructs.

Working Paper 16 FB9406V2

3.5.2.2 Characterizing An Opportunity

Object oriented technology is applicable in all ECS problem domains. However its greatest
utility can be expected from projects with the following characteristics:

• highly interactive, user-centric--not batched

• complex navigation of complex information structures--not massive retrieval of simple
structures

• event drive architectures--not sequential flow of control

• client/server and distributed applications--not monolithic

• workstation or larger based applications--not small embedded processors

• small team size developments in early phases (4-9 people)--not large scale until the
organization (engineering and management) have gained experience in the technology

Object technology is least useful in the design of mathematical algorithms and hard real-time
interrupt managed applications. However, object technology may still be useful in the analysis
or implementation (hybrid C++) phases of these applications.

Candidate projects for the Fast-Track will represent a diversity of project problem domains. This
approach affords the best opportunity to learn about all aspects of applying the technology.
Candidates will be selected from each of the segments: FOS, SDPS, and CSMS. Problem
domains which will be explored include:

• real-time and high performance processing

• instrument planning and scheduling

• information retrieval and storage management

• communications infrastructure mechanisms including distributed processing

• graphical user interface

For each candidate target of opportunity to apply object-oriented technology the following risk
factors should be rated as High, Medium, or Low risk. For High and Medium risk items a
mitigation strategy should be included in the project's plan.

• Skills of the available people

1. Do they understand the concepts of modern software engineering such as
encapsulation, information hiding?

2. Do they have object-oriented or object-based language skills such as Small talk, C++,
or Ada?

3. Do they all have domain knowledge?

• Object technology support

4. Is a mentor part of the team or readily available?

5. Is training available for those not already trained?

Working Paper 17 FB9406V2

• Scope of the project

6. Are the requirements well understood by the team?

7. Is the problem well bounded?

• Development schedule

8. Is the size of the project scoped to less than three months for the first iteration?

9. Is this pilot on the program's critical path?

• Management buy-in

10. Is management at all levels aware of the plan?

11. Is management involved in the cultural change?

12. Is management committed to following through with the support required for
success?

3.5.2.3 Establish a Fast-Track Plan

Once a target project is selected, a risk assessment has been completed, the team members are
identified, and the training schedule is aligned, the project plan needs to be completed. This
includes the identification of activities, milestones and risk assessment check points. A schedule
template and checklist of activities which may be used as a starting point is contained in the
Advance Concepts Center Overview of Object-Oriented Methodology. The specific section to
examine are:

• Section 110-720 Analysis Phase--Milestones and Scheduling

• Section 110-730 Design Phase--Milestones and Scheduling

Next, select a stable requirements baseline for the training pilot and scope the project to be
completed in approximately three months. Include demonstrable milestones related to the
critical success factors for the pilot. Have the plan reviewed by the Object-Oriented Core Team
for risk assessment and coordination assistance of consulting and other support identified in the
plan. Ensure a consultant or mentor is available and part of the plan.

At each major milestone, record lessons learned and recommendations for successive project
increments and for dissemination by the core team to other parts of the organization.

3.6 System Engineering Methodology

The development of a System Engineering Methodology using object-oriented concepts must
consider that the object-oriented concepts are not as established in System Engineering as they
are in Software Engineering. The ECS program is using the object-oriented concepts in the
development of the System Design. However, the fully defined and agreed to object-oriented
System Engineering methodology is still under development. The approach to developing an
object-oriented System Engineering process for ECS is discussed below with a near-term
perspective, i.e. before SDR, and long-term perspective, after SDR.

Working Paper 18 FB9406V2

Table 3. Activities for Developing Object-Oriented System Engineering
Methodology

Near-Term (before SDR) Long-Term (after SDR)

System Design using object-oriented concepts Document “as-built” System Design process

Update of System Engineering Plan Segment Design using object-oriented
concepts

Update System Design Specification

object-oriented SE Training Material

In the near-term, two activities are critical: 1) development of a System Design using object-
oriented concepts, and 2) updating the System Engineering Plan. As described in ECS SDPS
Reference Architecture White Paper, the System Design is being developed, at least partly, using
object-oriented concepts. The determination of a consistent set of object-oriented concepts used
to describe the entire system will be resolved as part of the development of the System Design
Specification. The System Engineering Plan is to be updated prior to SDR based upon
comments of the first version which was submitted to EOSDIS, and based upon two recent white
papers: The ECS Evolutionary Development Process and Multi-Track Development for the ECS
Project. In addition, the revision of the plan can begin to incorporate object-oriented ideas based
upon the Segment Design Document (SDS) development plan and the recent class on object-
oriented System Engineering.

The long-term strategy is based upon maturing the definition of an ECS System Engineering
approach based on object-oriented concepts in support of the evolutionary nature of the ECS
program. A baseline of this process will be set by the activities leading up to SDR. It will be
critical to capture this process along with lessons learned to refine the ECS System Engineering
process. This may follow the model of a white paper - ECS object-oriented System Engineering
Process - followed by updates to the System Engineering Plan. Although there is only one SDR
on the ECS program, because of the multiple releases in the program and the need to conduct
object-oriented SE for some segments leading up to PDR, a revision to the System Engineering
Plan is warranted. Besides the as-built System Design process, new information from ACC,
information available from the National Council on Systems Engineering and other sources will
be used to update the System Engineering Plan.

3.7 Software Methodology

The impact of introducing object oriented technology is pervasive. People, products, and
processes are all affected. All three aspects must be considered together. Integrating the
technology into products without considering the people, including management and customer,
would not maximize the benefits afforded by the technology. Management must be able to
monitor and control project development process performance as well as product quality.
Therefore, amendments to the software development plan and other project guidelines will
address each of these areas in a balanced way.

• Transitioning People to Object Technology

Working Paper 19 FB9406V2

• Transitioning Products to Object Technology

• Transitioning Processes to Object Technology

3.7.1 Transitioning People to Object Technology

To assist the cultural change to object technology two aspects must be addressed; organizational
roles and communications. Domain expert, mentor, and tool smith are examples of object-
oriented team roles recognized in the industry as having different responsibilities in dealing with
object technology. These recommendations will be examined and integrated into the program's
organizational structure where appropriate.

A common understanding of terms and concepts is very important in adopting any new
technology. A series of management and customer briefings will be conducted to ensure we are
all speaking the same language. Special topics might include metrics, development activity
definitions, and size and cost estimation for object-oriented developments. Status of early
adopters and Fast-Track training activities will also be communicated to management and the
customer on a regular basis. As enhancements to the Software Development Plan are developed
to properly manage object technology, briefings will be held to keep both engineers and
managers communicating on the same playing field.

3.7.2 Transitioning Products to Object Technology

Object-oriented software must be able to integrated with existing baseline architectures. Some
early prototypes, evaluation packages, and subsystem may contain all object-oriented software.
Some products will commingle object-oriented software with legacy or procedural software.
Where this is the case we will use the technique of reification to provide a well defined interface.
Reification is a technique for providing an isolation layer between class structures and procedure
or function calls. This technique presents a low risk because it is well understood and used
extensively in the industry. The added effort of building reified interface classes is not
considered significant. Well defined and controlled interfaces are part of any good software
architecture. Reified classes simply encapsulate the software to ensure the interface is enforced
at run-time.

We recognize that object models and relational table structures do not match up one for one. In
addition, the access mechanisms for the two technologies are fundamentally different.
Therefore, where relational database implementations are to be used, mapping rules and
guidelines will be developed to ensure data consistency and integrity across the project.

In addition to the software products, guidelines will be developed to produce CDRL products
which are "friendly" to the technology and meet all contract requirements. It is know that
functional specifications and functional design documents present some mapping difficulties to
object-oriented architectures. While this is a relatively low risk area, proper guidelines and
annotated outline will ease document production.

Working Paper 20 FB9406V2

3.7.3 Transitioning Processes to Object Technology

The OMT methodology is well documented in both the Text "Object Modeling Analysis and
Design" by James Rumbaugh et al and the training material provided by the Advanced Concepts
Center of Martin Marietta. Since it is a mature methodology used in many fortune 500
companies around the world, by itself, it poses little risk. The challenge is to integrate the
methodology with the parts of the program where non-object-oriented techniques and products
are employed. Issues to be addressed include program documentation production, control and
monitoring metrics and mechanisms, mapping to configuration items, and size and cost
estimation techniques.

In the area of metrics, we intend to provide both metrics which are unique to object-oriented
software and metrics which can be used in either domain. Some traditional metrics expected
values may need to be calibrated in the object-oriented domain. Technical Performance
Measures (TPM's) and Program Performance Measures (PPM's) appropriate to object technology
will be identified to the risk control board and risk plan.

Reuse is one of the major themes of object technology. We intend to explore the application of
the "Experience Factory" concept by Victor Basili. And, we intend to provide process guidelines
to engineers on how to:

• apply reification to encapsulate procedural reusable components,

• leverage modeling idioms unique to object technology, and

• use layering with encapsulation to build virtual machine architectures

Working Paper 21 FB9406V2

4. Segment Object Technology Plans

In this section, we identify the strategies and risk mitigation plans for introducing object
technology into each of the three major segments; Flight Operations, Science Data Processing,
and Communications and System Management. This plan is consistent with the program
baseline and future technology plans as detailed in the following program documents:

194-813-SI4-002 Planning and Scheduling Prototype Results Report for the ECS
Project, February 1994

FB9401V2 EOSDIS Core System Science Data Processing Subsystem Reference
Architecture White Paper, March 1994

FB9403V1 Release Plan Content Description White Paper, February 1994

FB9404V2 Multi-Track Development for the ECS Project White Paper,
March 1994

This plan will not duplicate other program plans. The intent of this plan is to provide a focal
point for identifying potential risks as input to the Risk Management Panel, and, to cost
effectively coordinate implementation of object technology. Wherever possible, references will
be made to other program plans.

This section of the Transition Plan discusses the current activities taking place on the ECS
program to identify and mitigate any risk due to adopting Object-Oriented technology.

The Object-Oriented issues related to ECS success lie in the following areas:

• Planning. As with all development efforts, planning is important. However, planning is
particularly critical when infusing a new technology.

• Training. Assuring that the technical staff is adequately prepared to address the
challenges of progressing to the Object-Oriented paradigm is the most important and
most easily addressed risk issue.

• Reuse of Heritage. ECS must take advantage of every opportunity to increase
productivity and reduce risk through the reuse of software that has been developed, tested
and proven to be of high quality.

• New Technology Shock. Care must be taken to assure that the speed with which ECS
adopts Object-Oriented technology does not create unwarranted risk. Experience with the
methodology is of prime importance, and techniques such as prototyping and incremental
development have proven very beneficial in the past.

• Measurement and Costing. The Object-Oriented technology community has had
insufficient time to develop "standard" Object-Oriented specific and unique metric values
to use for productivity and costing. Care must be taken to assure that planning,
scheduling and costing are done sufficiently well to benefit the program. In parallel, it is

Working Paper 22 FB9406V2

necessary to define metrics which can be used to measure the progress of the program
and which can be used to provide productivity data for future effort.

Each of these issues is addressed in the context of the overall ECS program in the next section.
The following sections address the unique activities being pursued by each of the segments and
SI&P.

4.1 Issues

4.1.1 Planning

Each segment is developing detailed development plans, an integral element of which will be
how and where object technology will be introduced. The rationale for the selection or non-
selection of the Object-Oriented approach will be detailed in those plans or as adjuncts to those
plans. Segment plans will be reviewed by the Object-Oriented Core team to ensure the total risk
for the program remains low. Management will be kept informed of the current status of all
Early Adopter plans and an overall object technology risk assessment.

4.1.2 Training

The ECS training plan provides courses through Martin Marietta's Advanced Concept Center and
through the Motorola University. These courses are being taught at the Landover site initially by
trained experts from these two companies. The courses are being delivered on a "just in time"
basis.

Some courses will "train the trainer", at which point they will shift to being taught by in-house
personnel using the same course material. There are several advantages to this approach. First,
training can begin with the expertise necessary to carry it out. Then as the source of the
instructor transitions, expertise is built up within the contract. This expertise then becomes a
valuable resource to be used not only for training, but for application development and for
mentoring within segments.

The following OO courses are available to the ECS program personnel, as well as NASA
personnel, through the ECS training program:

• System Engineering & Object-Oriented Technology

• Object-Oriented Distributed Systems Design

• Object-Oriented Analysis with StP for OMT

• STP/OMT for Users

• Object-Oriented Database Design

• Object-Oriented Analysis and Design

• Object-Oriented Design

• C++ Programming

• Distributed Processing Using C++

Working Paper 23 FB9406V2

• Advanced C++ Programming

To date about 100 program personnel have taken some combination of these courses. The plan
for the program is for all ECS program personnel involved in the Object-Oriented development
to be trained in the proper set of courses.

In addition, Loral is hosting C++ training from a local college, and actively sponsoring other
training opportunities. One example being a course titled "Overview of Object-Oriented
Software Development", which is directed at managers. Furthermore, the Hughes FOS Planning
and Scheduling group is hosting some formal and informal training sessions in the Hughes Class
Library (HCL).

The FOS group contains several people considered technology and methodology experts in the
areas of C++, OOA, OOD and HCL. These key personnel are valuable resources that will be
greatly relied on during design and development.

4.1.3 Reuse

There are several opportunities to reuse software on the ECS program: reuse of Object-Oriented
product software from another program; encapsulation and reuse of non-OO software from
another source; reuse of commercially available class libraries; and, internal reuse of ECS
developed software.

FOS has the greatest opportunity for reuse among the three segments. A considerable amount of
expertise and infrastructure has been developed in this group, including low-level classes and
routines packaged together as the Hughes Class Library (HCL). This Object-Oriented library
was developed by Hughes for an earlier program. It was designed to be reusable in the general
situation of satellite flight operations. The package has been in operation for several years, and
has been applied on several projects beyond that for which it was originally designed. The HCL
presents the ideal situation for reuse: it is domain specific, it has been designed for reuse, it is
Object-Oriented, it has been thoroughly tested, and it has been "wrung-out" in an operational
setting. Furthermore, the FOS Planning and Scheduling group is conducting training sessions in
HCL.

The Planning and Scheduling heritage systems, on which the FOS Planning and Scheduling
system is based, were developed using the OO methodology. A considerable amount of
expertise and infrastructure has been developed in this group, including low-level classes and
routines packaged together as the Hughes Class Library (HCL). HCL is currently in-house and is
being evaluated as an appropriate addition to the ECS project.

The domain expertise of the FOS personnel provides a level of reuse that is not commonly
available. Through their experiences with previous development efforts this group will be in a
position to draw on/reuse resources which are available throughout their respective
organizations.

SDPS will principally be making use of internal reuse via their incremental track development.
After the software from one track is subjected to the rigors of testing and user exercises it will be
migrated (reused) into the next increment. This internal reuse provides the same advantages as

Working Paper 24 FB9406V2

are inherent in the FOS HCL. The productivity of succeeding increments will improve and the
quality of the reused software will increase with use and modification. The SDPS reuse of
software within the incremental track development is equivalent to a spiral implementation, and
provides the benefits of a spiral methodology.

A principle aspect of reuse that will not be overlooked is that of COTS. The COTS will take the
form of standard software packages and reusable Object-Oriented class libraries. The reuse of the
class libraries presents an opportunity for productivity and quality enhancement that is not
readily available outside the Object-Oriented paradigm.

CSMS is planning to make a great deal of use of COTS products. The character of the segment is
such that COTS packages, both standard products and class libraries, are now available.
However, the prospects of very powerful tools such as CORBA being available in the near future
allow CSMS to postpone their decisions. The planning for these decisions in the context of
incremental development allows the opportunity to take the greatest advantage of the increased
capabilities.

4.1.4 New Technology Shock

A very real risk in the adoption and infusion of a new technology such as Object-Oriented is that
so many new issues arise at the same time that the sorting-out of the issues and the application of
the proper procedure becomes confusing. This situation is in no way due to the abilities of the
organization to deal with the issue or with the suitability of the technology. It is simply a matter
of doing the proper engineering to resolve many questions in so short a period of time.

The ECS team is taking five steps to avoid the shock: extensive training, which has already been
described; mentoring; and, fast-tracking, prototyping and incremental development.

4.1.4.1 Mentoring

A key element in effectively developing a system using methods or technology in which widely
available expertise is lacking is the application of mentors. Mentors are experienced people who
are capable of leveraging their expertise and experiences by influencing the direction and efforts
of the larger group.

Consultants from the Martin Marietta Advanced Concepts Center have been employed by the
program to assist in the infusion of the new Object-Oriented technology into the ECS program.
The mentoring is being employed in the following specific areas:

• Development of an Object-Oriented version of the system architecture

• Adaptation of NASA and DoD standard configuration item definitions to the Object-
oriented constructs

• Development of DID-compliant Object-Oriented templates for the software documents.

• StP/OMT tool support

• Assistance and guidance in the development and evaluation of Object-Oriented work
products

Working Paper 25 FB9406V2

• Development of an ECS metrics program

• Support to the segment managers in all Object-Oriented issues and tasks

• Other Object-Oriented duties as assigned.

FOS has several people considered technology and methodology experts in the areas of C++,
OOA, OOD and HCL. These key personnel are valuable resources that will be greatly relied on
during design and development.

4.1.4.2 Prototyping, Fast Track and Incremental Development

4.1.4.2.1 FOS

The Off-Line FOS software can potentially derive many of the benefits of the OO methodology.
The plan is to develop the off-line prototypes using the OO methodology. This enables a proof-
of-concept approach to be applied to the determination of the use of OO for the Off-Line
software.

A major concern exists in using OO methodology for the FOS Real-Time requirements.
Research and literature on past experiences has shown that there have been some difficulties in
meeting real-time needs using OO. Efforts are underway to evaluate the effectiveness of OO for
Real-Time activities. Along with the OO training, the Real-Time group has undertaken a
prototype effort specifically to evaluate the OO paradigm for a real-time implementation. In
addition, the Real-Time group will discuss the use of OO for real-time applications with the ECS
OO consultants (i.e., Martin Marietta Advanced Concepts Center), who have experience in the
control center domain using the OO methodology.

In addition to Planning and Scheduling, some very small scale prototyping activity is being
conducted in the real-time area to explore performance issues associated with implementing
OMT models.

4.1.4.2.2 SDPS and CSMS

The incremental development track allows evolution of emerging technology and rapid
development of selected ECS software with minimal documentation generated during the
development period.

Incremental development is used to mitigate technical risks inherent in software with ill-defined
requirements, with extensive interactive software, or with a new technology, or standards
heritage. As such, tool kits and some selected ECS components will be developed according to
the incremental process. The incremental process will develop the infrastructure of the data
management (SDPS) and communication (CSMS) components of the ECS system.

An incremental development approach involves the user community in the process of product
evolution, since capabilities are demonstrated frequently in a "build and test a little, evaluate a
little" development progression. The direction and progress of the development is verified
during each increment --- verifying that user requirements are understood and correctly
implemented. Lessons learned in one incremental development cycle may be used to improve

Working Paper 26 FB9406V2

software in the subsequent incremental development cycle. Externally-developed software,
COTS, and COTS-intensive software, when available, may be more easily integrated and
evaluated than in a more formal environment, due to not being "tied-down" to a specific product
early in the development.

The following table summarizes the SDPS prototype plan.

Table 4. SDPS Prototype Plan (1 of 2)
Prototype ECS Effort Other ECS

 Resources

SDPS External

Involvement

1. End-to-End Distrib-
uted Data Management

12 m/months (for
first six months of
three year prototype)

STL
travel costs

12 m/months
 HRL
6m/months
Sequoia 2000

2. Distributed
 Oceanographic Data
Systems

3 m/months travel to URI University of
 Rhode Island

3. Pathfinder
Algorithm
Ingestion

6 m/months
integration and
analysis
6 m/months
operations

Cray, workstation cluster,
SGI + Sony OD reader
StorageTek for media
storage

GSFC DAAC, HPCC

4. Scheduler 10 m/months processing
development environment

5. Earth Science
 Data
Language

10 m/months information
management
development
environment

V0

6. DBMS 4 m/months initial
comparison/vendor
benchmarks
6m/months ECS
investigation
of selected candidate

information
management
development
environment

7. Advertising
Service

7 m/months information
management
development
environment

CSMS, V0

8. ECS User
Interface Workbench

8 m/months SGI or SUN
development platform

V0

Working Paper 27 FB9406V2

Table 4. SDPS Prototype Plan (2 of 2)
Prototype ECS Effort Other ECS

 Resources

SDPS External

Involvement

9.Unitree/Fileserv
Comparison

complete complete complete

10. Multi-FSMS 12 m/months archiving
development environment

11. Archive
Component
Evaluation

6 m/months archiving
development environment

12. Staging Analysis 12 m/months archiving
development environment
including RAID disk farm

13. Network
Attached Storage

6 m/months archiving
development environment

CSMS

14. Data
Compression

8 m/months archiving
development environment

External
prototypes (e.g. EDC)

The following represents the SDPS prototyping schedule.

Table 5. SDPS Prototyping Schedule

Monday, February 14, 1994

2. Distributed Oceanographic Data Systems

3. Pathfinder Algorithm Ingestion

4. Scheduler

5. Earth Science Data Language

6. DBMS

7. Advertising Service

8. ECS User Interface Workbench

9. Unitree/Fileserv Comparison

10. Multi-FSMS

11. Archive Component Evaluation

12. Staging Analysis

13. Network Attached Storage

14. Data Compression

FORMAL ECS RELEASES

EVALUATION PACKAGE RELEASES

1. End-to-End Data Management

SDPS Early Prototyping Plan

Schedule J F M A M J J A S O N D

1994

J F M A M J J A S O N D

1995

J F M A M J J A S O N

1996

D

TRMM ReleaseAlgorithm I&T Release

EP4 EP5 EP6 EP7

devpt ops

assess devpt

first phase

Working Paper 28 FB9406V2

4.1.5 Measurement and Costing

4.1.5.1 Costing of Object-Oriented Development

The approach to modeling the costing for the ECS system will be to use a combination of the
REVIC cost estimating tool and mentoring experience. The REVIC variables which characterize
a development effort will be evaluated to estimate the expected differences between an object
oriented development and a functional/structured methodology development. The REVIC model
is based on Barry Boehm's CoCoMo model and uses line-of-code estimates as its primitive
element. Each of the estimates developed for each segment will be subjected to an object
oriented-based review to assure that the characterizations of the variables is reasonable, and that
the ECS management staff is comfortable with the results.

While it is generally agreed in the object oriented community that line-of-code estimates are not
the best measure of the effort required for an object oriented project, it remains that there is no
data available which will provide the calibration of the OO costing against organizational
experience. It is agreed, however, that the total effort required for an OO project is not
inconsistent with that of a functional/structured project. To guard against underestimating the
effort required for the OO development costing will be done using conservative line-of-code
estimates.

4.1.5.2 Line of Code Count

Line-of-code count has been the Hughes standard metric for costing software development, and
was used for costing in the proposal. The OO effort will be developed using C++ code. For the
reasons detailed below the actual number of lines of C++ code will be fewer than would be
developed in other high-order languages.

The industry experience has been that fewer lines of C++ code are required to provide the same
functionality as the same number of lines-of-code in other languages. However, the productivity
in developing C++ code for OO applications is lower than other languages and methodologies.
Hughes experience in the development of the Planning and Scheduling class library has
supported this assertion. This is the same situation that is found in comparing the LOC
productivity (LOC/hr.) for assembly language with that of a high-order language (e.g.
FORTRAN, C). Far more functionality can be implanted in a system over a given period of time
with an HOL than with assembly. However, there will be a far higher LOC count for the
assembly than for the HOL. The resultant LOC/hr. will look more productive, but more
functionality will be available in the HOL application. The reason for this is the relative power of
the languages.

Working Paper 29 FB9406V2

4.1.5.3 Object Oriented Metrics

As the development progresses more experience will be gained in the application of the
methodology and the C++ language. This experience will be used to refine the REVIC model
and the subsequent costing of new elements of the ECS system. The following metrics will be
collected during the development:

• Total number of classes

This will provide a measure of the size of the program at an early stage. The number of
classes will be the first element of the design to solidify. The other metrics will evolve as
the classes are elaborated as a result of the continuing iterations.

The total number of cases can be extracted for the StP/OMT tool.

• Total number of methods

• Average number of methods per class

The Total number of methods and Average number of methods per class can be extracted
for the StP/OMT tool.

• Average number of LOC per method

The Total number of methods, the Average number of methods per class and the Average
number of LOC per method will provide a more detailed measure of the complexity of
the program, the progress, and the size of the software system, and will provide the first
confirmation of the actual number of lines-of-code required.

• Average depth of inheritance tree (DIT)

This indicates the number of ancestor classes that may affect this class. The deeper the
inheritance hierarchy the greater the number of methods it is likely to inherit, and the
greater the amount of reuse of inherited methods. There is a trade-off between simplicity
(DIT near 1) and maximizing reuse. The rule of thumb is that DIT should be less than 6.
The depth of the inheritance also provides a measure of the complexity of the design, and
the ease with which the software will be maintained. The more shallow the depth of the
inheritance tree the less complex is the design.

The DIT data can be extracted for the StP/OMT tool.

• Average number of children

The average number of children is an indication of the influence that a class has on the
design. If a class has a large number of children, then it may require more testing of the
methods in that class. The greater the number of children the greater the reuse by
inheritance, but also the greater the risk of improper abstraction in the parent class.

• Coupling between objects (CBO)

One class is coupled to another if it uses the methods or attributes of another class. CBO
indicates how independent an object is, hence how reusable it is and how easily it will be
integrated into the system. The higher the CBO the greater the sensitivity to changes,
hence, the more testing is required.

Working Paper 30 FB9406V2

• Average number of attributes per class

Each of the metrics will be estimated at the beginning of OO design (after SDR) and will
be tracked against the emerging actual values as the program progresses. The results will
be used as both progress indicators and as emerging actual metric results to be applied
later in the program.

The Average number of attributes per class can be extracted from the StP/OMT tool.

The Software Development Plan reflects an Object Oriented Metrics Plan.

4.2 Segment Summary

4.2.1 Flight Operations Object Technology Plan

Planning and Scheduling has been using object-oriented programming for their prototype
activity. Much of their application will be based on the Hughes Class Library which is written in
C++.

Several members of the FOS team attended Object-Oriented Analysis and Object-Oriented
Design training .

In addition to Planning and Scheduling, some very small scale prototyping activity is being
conducted in the real-time area to explore performance issues associated with implementing
OMT models.

Furthermore, the Hughes FOS Planning and Scheduling group is hosting some formal and
informal training sessions in HCL.

4.2.2 Science Data Processing Object Technology Plan

SDPS is introducing object technology in two area, the Data Acquisition and Distribution
Subsystem (DADS) and the Information Management Subsystem (IMS).

The Science Data Processing Segment (SDPS) has a clear need to take advantage of object
technology to implement the "Architectural Mandate" presented in the EOSDIS Core System
Science Data Processing Reference Architecture white paper, FB9401V2. The philosophy of the
reference architecture includes the following key principles:

• open distributed architecture

• behavior or service-orientation

• evolutionary development approach

• support emerging standards and

• forward looking technology integration

Working Paper 31 FB9406V2

The reference architecture will employ an evolutionary migration to object-oriented concepts and
object-oriented COTS standards and products. As detailed in the reference architecture white
paper, SDPS is employing this evolutionary approach in the following three key areas:

"• the development of objects and services-based system decomposition, as
described in the reference architecture white paper, section 3.3.2. In this
approach, the objects will be hidden initially under interface classes which
represent the various ECS system services.

• interfaces to distributed computing components will use an abstraction layer
to allow migration from a client-server based approach (i.e., employing
remote procedure calls) to a distributed object approach (e.g., CORBA) with
minimal impact on software.

• the database management and search architecture will enable a transition to an
object paradigm, again with minimal impact on applications and users."

(taken from the ECS Science Data Processing Reference Architecture white paper)

DADS launched a prototype starting in late 1993 to explore the efficacy of the technology. Since
that time their confidence has grown and are in the process of applying OMT to Evaluation
package EP-3. This was a low risk approach. Many of the team members were trained in C++
during evening classes. An OMT overview was provided by one of the object-oriented
experienced team members. The team was small and all members were experts in the domain.
An object model was developed using the Software through Pictures CASE tool (StP/OMT).

4.2.3 CSMS

CSMS is pursuing Object-Oriented technology very carefully.

There is much to be gained by judiciously evaluating COTS products and Object-Oriented standards so
that the greatest advantage can be taken of the emerging OO tools, standards, and COTS.

CSMS is continuing to pursue the course of incremental development so that the greatest possible
benefit can be gained by delaying the implementation of functionality until the COTS products and the
reusable class libraries mature, and so that the latest possible technology can be included in the system.

Working Paper 32 FB9406V2

This page intentionally left blank.

Working Paper AB-1 FB9406V2

Abbreviations and Acronyms

ANSI American National Standards Institute

API application programmer’s interface

ASCII American Standard Code for Information Interchange

CORBA Common Object Request Broking Architecture

COTS commercial off-the-shelf (hardware or software)

CSMS Communications and System Management Segment

DBMS data base management system

DCE Distributed Communications Environment of OSF

ECS EOSDIS core system

EOS Earth Observing System

EOSDIS EOS Data and Information System

FOS Flight Operations Segment

GUI Graphic User Interface

H/W hardware

HCL Hughes Class Library

HITC Hughes Information Technology Corporation

HMI human machine interface

IDL Interface Definition Language

IEEE Institute of Electrical and Electronic Engineers

IMS Information Management System (ECS)

ISO International Standards Organization

kbytes Kilo-bytes (103)

Mbytes Mega-bytes (106)

NASA National Aeronautics and Space Administration

OO object oriented

OODBMS object oriented database management system

ODL Object Description Language

OSF Open Systems Foundation

Working Paper AB-2 FB9406V2

OSI Open System Interconnect

POSIX Portable Operating System Interface for Computer Environments

RDBMS relational database management system

S/W software

SDPS Science Data Processing Segment

SQL Structured Query Language

X.500 OSI standard for directory services

	1. Introduction
	1.1 Purpose
	1.2 Organizaton
	1.3 Review and Approval

	2. Background
	2.1 Selecting Object-Oriented Technology
	2.2 Rationale for Selecting OMT
	2.3 Related Documents

	3. Object-Oriented Implementation Strategies
	3.1 Overview
	3.2 Object-Oriented Core Team
	3.3 Object Technology Training Program
	3.4 Consulting & Mentoring Program
	3.5 Fast-Tracking Strategy
	3.6 System Engineering Methodology
	3.7 Software Methodology

	4. Segment Object Technology Plans
	4.1 Issues
	4.2 Segment Summary

	List of Figures (Single Click Links)

